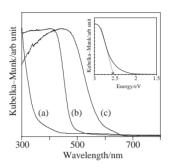
Lanthanum-Indium Oxysulfide as a Visible Light Driven Photocatalyst for Water Splitting

Kiyonori Ogisu, Akio Ishikawa, Kentaro Teramura, Kenji Toda, Michikazu Hara, and Kazunari Domen Depertment of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 Graduate School of Science and Technology, Niigata University, 8050 Ikarashi Ninocho, Niigata 950-2181 Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatuta, Midori-ku, Yokohama 226-8503

(Received April 9, 2007; CL-070380; E-mail: domen@chemsys.t.u-tokyo.ac.jp)


La–In-based oxysulfide is demonstrated to act as a photocatalyst for the reduction of H^+ to H_2 and the oxidation of H_2O to O_2 in the presence of sacrificial reagents under visible light (420 $\leq \lambda \leq$ 480 nm). Loading with IrO $_2$ is effective for promoting O_2 evolution, while Pt is effective as a cocatalyst for H_2 evolution.

Certain sulfides, such as $CdS^{1,2}$ and $(AgIn)_xZn_{2(1-x)}S_2$, exhibit good absorption in the visible-light region^{4–6} and display activity for the photoreduction of H^+ to H_2 in the presence of an electron donor such as S^{2-} and SO_3^{2-} . However, sulfides are generally unstable in water oxidation to form O_2 because the S^{2-} anions are sensitive to oxidation by photogenerated holes. 7,8 Recently, $Ln_2Ti_2S_2O_5$ (Ln=Pr-Er) oxysulfides have been demonstrated to act as stable photocatalysts for both H^+ reduction and the oxidation of H_2O to O_2 . 9,10 In the present study, La-In oxysulfide with d^{10} electric configuration is investigated as another potential photocatalytic material for water splitting under visible light.

Following the example of Kabbour et al., 11 the preparation of LaInS2O was attempted in this study by heating a mixture of La₂S₃, La₂O₃, and In₂S₃ at a stoichiometric molar ratio $(La_2S_3:La_2O_3:In_2S_3=1:2:3)$ in a sealed quartz tube under vacuum at temperatures of 873-1273 K for 6-24 h.11 In this study, we henceforth report the sample obtained at 1073 K for 12 h, which showed the highest photocatalytic activities among all prepared samples. The sintered samples were then ground and heated at 573 K for 1 h in air to remove absorbed sulfur⁹ to yield a yellow powder. The crystal structure of the resulting material was examined by powder X-ray diffraction (XRD) using a Rigaku Geigerflex RAD-B instrument with Cu Kα radiation. Ultraviolet-visible diffuse reflectance (UV-vis DR) spectra were obtained using a Jasco V-560 spectrometer. Photoreduction of H⁺ to H₂ and photooxidation of H₂O to O₂ in the presence of sacrificial reagents were carried out in a Pyrex reaction vessel connected to a gas-circulation system. H2 evolution was examined using an aqueous solution (200 mL) containing 0.1 g of the oxysulfide loaded with Pt metals by in situ photodeposition, and 0.01 M Na₂S and 0.01 M Na₂SO₃ as sacrificial electron donors. O2 evolution was examined using an aqueous 0.01 M AgNO₃ solution containing 0.1 g of the oxysulfide loaded with IrO₂ by the impregnation method with Na₂IrCl₆ solution and then the treatment in air at 573 K for 1 h. La₂O₃ was used as a buffer material to maintain the pH of the solution at 7-8.

The reaction solution was evacuated several times to remove air and then irradiated under visible light using a 300-W Xe lamp with a cutoff filter ($\lambda > 420 \, \mathrm{nm}$) to eliminate UV light and water filter to remove infrared light.

Most of the crystalline peaks produced by the present sam-

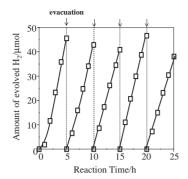


Figure 1. UV-vis diffuse reflectance spectra for (a) LaInO₃, (b) La-In oxysulfide, and (c) Sm₂Ti₂S₂O₅.⁹

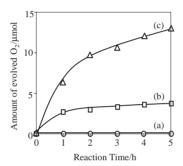

ples matched those for LaInS₂O reported by Kabbour et al.¹¹ Yet, the structural detail of the LaInS₂O phase is unknown. Given the presence of In_2O_3 in the XRD pattern, the oxysulfide obtained by the present preparation procedure is considered to be a mixture of In_2O_3 and minor impurity phases, most likely $La_{1.33}In_{1.33}S_4^{12}$ and $LaIn_2S_4$.¹³ As a single-phase $La_5In_3S_9O_3$ powder sample could not be obtained from starting materials with a nominal composition of La:In = 5:3, $La_5In_3S_9O_3$ may exist in the present samples as a metastable phase in an overall In-rich (La:In = 1:1) system. Therefore, the prepared samples containing those phases henceforth are denoted as La-In oxysulfide.

Figure 1 shows the UV-vis DR spectra for the present La–In oxysulfide and LaInO₃. For comparison, UV-vis DR spectrum of Sm₂Ti₂S₂O₅ is also shown. Plane–wave–based density function theory (DFT) calculations have suggested that the valence band ($E_{\rm VB}$) of Sm₂Ti₂S₂O₅ is made up of the O2p and S3p hybridized orbitals and the conduction band ($E_{\rm CB}$) consists of Ti3d; as a result, Sm₂Ti₂S₂O₅ has a smaller band-gap energy (\approx 2.1 eV) compared with that of Sm₂Ti₂O₇ (\approx 3.5 eV). Similarly, the $E_{\rm VB}$ of the La–In oxysulfide appears to consist of the O2p and S3p orbitals. On the other hand, the $E_{\rm CB}$ of La–In oxysulfide and LaInO₃ in both cases would be composed of hybridized In5s5p orbitals. ¹⁴ Accordingly, the La–In oxysulfide has a smaller band-gap energy (\approx 2.6 eV) than LaInO₃ (\approx 4.1 eV).

Figure 2 shows the time course of repeated H_2 evolution over La–In oxysulfide loaded with 1.0 wt % Pt under visible-light irradiation ($\lambda > 420$ nm) in the presence of $Na_2S-Na_2SO_3$. The reaction system was evacuated every 5 h. In the early stage of the reaction (2 h), H_2PtCl_6 was reduced to Pt as an H_2 evolution promoter on the catalyst surface. The rate of H_2 evolution, however, remained essentially stable after this induction period. The XRD pattern of the catalyst after the H_2 evolution reaction was the same as before the reaction. The Pt-loaded La–In oxysulfide therefore functions as a stable photocatalyst for the reduction of H^+ to H_2 under visible-light irradiation.

Figure 2. Time course of repeated H₂ evolution over La–In oxysulfide (Pt-loaded catalyst, 0.1 g; 0.01 M Na₂S–0.01 M Na₂SO₃ solution, 200 mL).

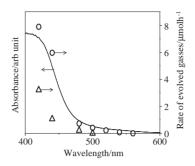


Figure 3. Time course of O_2 evolution over (a) CdS, (b) La–In oxysulfide, and (c) 2 wt % Ir O_2/La –In oxysulfide under visible-light irradiation ($\lambda > 420\,\mathrm{nm}$) (catal., 0.1 g; 0.01 M AgNO₃ solution, 200 mL; La₂O₃, 0.2 g).

Figure 3 shows the time courses of O_2 evolution over bare and IrO_2 -loaded La–In oxysulfide, and over CdS for comparison. O_2 evolution was not observed over CdS owing to the photodecomposition of CdS by photogenerated holes. In contrast, over the bare La–In oxysulfide, O_2 evolution was observed immediately with the onset of irradiation. Loading with 2 wt % IrO_2 increased the evolution rate by approximately three-fold, indicating that IrO_2 is an effective O_2 evolution promoter for the La–In oxysulfide. After an initial period (1 h), the rate of O_2 evolution decreased over time owing to the deposition of metallic silver on the surface of the catalyst.

Figure 4 shows the relationship between the H_2 and O_2 evolution rates and the cutoff wavelength of incident light. The steady rate of H_2 evolution and the initial rate of O_2 evolution decreased with increasing cutoff wavelength, confirming the position of the absorption edge of the La–In oxysulfide and the procession of these photocatalytic reactions via band-gap transitions. No O_2 evolution was observed under visible-light irradiation with longer wavelength than 500 nm because of our detection limit to be $\approx 0.1 \ \mu mol \ h^{-1}$.

The apparent quantum efficiencies (QE)¹⁵ of H_2 and O_2 for La–In oxysulfide (Fig. 2 and Fig. 3b) were estimated to be \approx 0.2 and \approx 0.1%, respectively, indicating that La–In oxysulfide exhibited superior QE for H_2 evolution and lower QE for O_2 evolution compared to those of $Sm_2Ti_2S_2O_5$ [QE: 0.1% (H_2), 0.2% (O_2)]. Although many factors should affect photocatalytic activity, it seems that E_{CB} of In5s5p orbitals with large dispersion mainly led to the higher QE of H_2 evolution and the purity

Figure 4. Dependence of rate of H_2 and O_2 evolution on cutoff wavelength of incident light, and UV–vis DR spectrum of La–In oxysulfide. Circles denote H_2 evolution (1 wt % Pt-loaded catal., 0.1 g; 0.01 M Na₂S–0.01 M Na₂SO₃ solution), and triangles denote O_2 evolution (2 wt % IrO₂-loaded catal., 0.1 g; 0.01 M AgNO₃ solution, La₂O₃, 0.2 g).

of La–In oxysulfide containing sulfide phases influenced the QE for O_2 evolution.

La–In oxysulfide was demonstrated to catalyze the reduction of H^+ to H_2 and the oxidation of H_2O to O_2 under visible-light irradiation in the presence of a sacrificial electron donor (Na₂S–Na₂SO₃) or acceptor (Ag⁺), respectively. This oxysulfide, with a band gap of 2.6 eV, was thus confirmed to be a photocatalyst with reduction and oxidation abilities, having conduction and valence bands at suitable potentials for the reduction of H^+ and oxidation of H_2O . O_2 evolution was effectively enhanced by loading with IrO₂, while Pt proved to be suitable as a cocatalyst for H_2 evolution.

References

- N. Bühler, K. Meier, J.-F. Reber, J. Phys. Chem. 1984, 88, 3261.
- 2 M. Matsumura, S. Furukawa, Y. Saho, H. Tsubomura, J. Phys. Chem. 1985, 89, 1327.
- I. Tsuji, H. Kato, H. Kobayashi, A. Kudo, J. Am. Chem. Soc. 2004, 126, 13406.
- 4 K. Domen, J. N. Kondo, M. Hara, T. Takata, *Bull. Chem. Soc. Jpn.* **2000**, *73*, 1307.
- 5 A. Kudo, H. Kato, I. Tsuji, Chem. Lett. 2004, 33, 1534.
- 6 J. Sato, N. Saito, H. Nishiyama, Y. Inoue, J. Phys. Chem. B 2003, 107, 7965.
- 7 R. Williams, J. Chem. Phys. 1960, 32, 1505.
- 8 H. Gerischer, J. Electroanal. Chem. Interfacial Electrochem. 1975, 58, 263.
- A. Ishikawa, T. Takata, J. N. Kondo, M. Hara, H. Kobayashi,
 K. Domen, J. Am. Chem. Soc. 2002, 124, 13547.
- A. Ishikawa, T. Takata, T. Matsumura, J. N. Kondo, M. Hara, H. Kobayashi, K. Domen, *J. Phys. Chem. B* **2004**, *108*, 2637.
- H. Kabbour, L. Cario, Y. Moëlo, A. Meerschaut, J. Solid State Chem. 2004, 177, 1053.
- 12 A. Likforman, M. Cuittard, Acta Crystallogr., Sect. C 1993, 49,
- 13 S. A. Amirov, N. A. Shnulin, G. G. Guseinov, S. Kh, Mamedov, Kristallografiya 1984, 29, 787.
- 14 J. Sato, H. Kobayashi, Y. Inoue, J. Phys. Chem. B 2003, 107,
- 15 Quantum efficiency values were calculated with using the coefficients (H₂: 2, O₂: 4), steady H₂ or initial O₂ evolution rate, the rate of absorption of incident photons [Sm₂Ti₂S₂O₅: 8.6×10^{21} photons h⁻¹ at $440 \le \lambda \le 650$ nm, La–In oxysulfide: 7.4×10^{21} photons h⁻¹ at $420 \le \lambda \le 600$ nm].